Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.380
Filtrar
1.
J Mech Behav Biomed Mater ; 154: 106533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598918

RESUMO

The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% Al2O3 and 20% ZrO2 was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C. After cooling and holder gluing, a stereolithography (STL) file was designed and uploaded to manufacture disk-shaped specimens projected to comply with ISO 6872:2015. Seventy specimens were produced through machining of the blocks, samples were sintered at 1600 °C and two-sided polished. Half of the samples were subjected to accelerated autoclave hydrothermal aging (20h at 134 °C and 2.2 bar). Immediate and aged samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical and mechanical properties were assessed by reflectance tests and by biaxial flexural strength test, Vickers indentation and fracture toughness, respectively. Samples produced by machining presented high density and smooth surfaces at SEM evaluation with few microstructural defects. XRD evaluation depicted characteristic peaks of alpha alumina and tetragonal zirconia and autoclave aging had no effect on the crystalline spectra of the composite. Optical and mechanical evaluations demonstrated a high masking ability for the composite and a characteristic strength of 464 MPa and Weibull modulus of 17, with no significant alterations after aging. The milled composite exhibited a hardness of 17.61 GPa and fracture toughness of 5.63 MPa m1/2, which remained unaltered after aging. The synthesis of ZTA blocks for CAD-CAM was successful and allowed for the milling of disk-shaped specimens using the grinding method of the CAD-CAM system. ZTA composite properties were unaffected by hydrothermal autoclave aging and present a promising alternative for the manufacture of infrastructures of fixed dental prostheses.


Assuntos
Óxido de Alumínio , Cerâmica , Teste de Materiais , Óxido de Alumínio/química , Cerâmica/química , Propriedades de Superfície , Zircônio/química , Desenho Assistido por Computador , Materiais Dentários
2.
J Environ Manage ; 356: 120751, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531131

RESUMO

Cost-effective treatment or even valorization of the bauxite residue (red mud) from the alumina industry is in demand to improve their environmental and economic liabilities. This study proposes a strategy that provides a near-complete conversion of bauxite residue to valuable products. The first step involves dilute acid leaching, which allowed the fractionation of raw residues into (1) an aqueous fraction rich in silica and aluminium and (2) a solid residue rich in iron, titanium and rare earth elements. For the proposed process, 91% of the original silicon, 67% of the aluminium, 78% of the scandium and 69% of the cerium were recovered. The initial cost evaluation suggested that this approach is profitable with a gross margin of 167 $US per tonne. This "Residue2Product" approach should be considered for large-scale practices as one of the most economical and sustainable solutions to this environmental and economic liability for the alumina industry.


Assuntos
Óxido de Alumínio , Alumínio , Óxido de Alumínio/química , Ferro , Titânio , Água
3.
Chemosphere ; 352: 141193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242511

RESUMO

The rapid growth in the use of aluminum oxide nanoparticles (Al2O3 NPs) in various fields such as medicine, pharmacy, cosmetics industries and engineering, and the fact that these NPs and their wastes mix with the aquatic environment and damage the aquatic ecosystem, affect the organisms in the water, enter the food chain and reach humans is a major problem is cause for concern. The aim of this study is to investigate the oxidative stress caused by two separate forms of aluminum oxide, γ-Al2O3 and α-Al2O3, in Gammarus pulex, which is a good indicator species, with biochemical parameters. For this purpose, G. pulex was exposed to different concentrations (0, 10, 20, 40 ppm) of γ-Al2O3 and α-Al2O3 separately. The experiments were carried out for 24 and 96 h by creating 3 repeated experimental groups consisting of 4 groups. For biomarker analysis, superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) and thiobarbituric acid (TBARS) levels were performed using an ELISA kit. As a result of the in experimental study, it was observed that both nanoparticles affected oxidative stress and antioxidant parameters after 96 h compared to the control group. Increases in SOD activity were observed, γ-Al2O3 caused a decrease in CAT activity at 24 h, and α- Al2O3 caused increases in CAT activity at 96 h. Decreases in GSH levels and increases in TBARS levels have been observed.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Óxido de Alumínio/toxicidade , Óxido de Alumínio/química , Substâncias Reativas com Ácido Tiobarbitúrico , Ecossistema , Estresse Oxidativo , Antioxidantes/metabolismo , Glutationa/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Superóxido Dismutase/metabolismo , Nanopartículas Metálicas/toxicidade
4.
Waste Manag ; 175: 146-156, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199169

RESUMO

Waste wood biomass is considered a renewable energy source. Combining biomass combustion with emerging clean combustion technologies such as chemical looping combustion (CLC) can yield effective and affordable carbon capture and, consequently, lead to negative net emissions of greenhouse gases. Oxygen carrier (OC) is a crucial material in CLC technology that must exhibit certain properties, such as high durability, good chemical stability during numerous red-ox cycles and, important for the combustion of solid fuels, the capability of spontaneously releasing oxygen in a process referred to as chemical looping with oxygen uncoupling (CLOU). In this work, a series of nine CuxMg1-xFe2O4 spinel-based materials were synthetized and evaluated for the first time as potential OCs for a waste biomass combustion. Their properties, such as oxygen transport capacity and reactivity with biomass (wood chips) as a fuel, were evaluated in a function of temperature (900-1000 °C). Tested oxygen carriers were characterized with an excellent oxygen transport capacity in CLOU process (up to 2.78 wt%) and good reaction rates with the fuel (up to 1.19 wt. %/min), and regeneration rates (up to 3.8 wt. %/min). High conversion of the waste biomass was also achieved (98.9 %). Moreover, new findings revealed a strong positive effect of magnesium addition on mechanical strength (crushing strength > 4 N for samples with Mg content above 0.5).


Assuntos
Óxido de Alumínio , Oxigênio , Oxigênio/química , Biomassa , Óxido de Alumínio/química , Óxido de Magnésio
5.
Environ Sci Technol ; 58(4): 2017-2026, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38214482

RESUMO

Understanding the dissolution of boehmite in highly alkaline solutions is important to processing complex nuclear waste stored at the Hanford (WA) and Savannah River (SC) sites in the United States. Here, we report the adsorption of model carboxylates on boehmite nanoplates in alkaline solutions and their effects on boehmite dissolution in 3 M NaOH at 80 °C. Although expectedly lower than at circumneutral pH, adsorption of oxalate occurred at pH 13, with adsorption decreasing linearly to 3 M NaOH. Classical molecular dynamics simulations suggest that the adsorption of oxalate dianions onto the boehmite surface under high pH can occur through either inner- or outer-sphere complexation mechanisms depending on adsorption sites. However, both adsorption models indicate relatively weak binding, with an energy preference of 1.26 to 2.10 kcal/mol. By preloading boehmite nanoplates with oxalate or acetate, we observed suppression of dissolution rates by 23 or 10%, respectively, compared to pure solids. Scanning electron microscopy and transmission electron microscopy characterizations revealed no detectable difference in the morphologic evolution of the dissolving boehmite materials. We conclude that preadsorbed carboxylates can persist on boehmite surfaces, decreasing the density of dissolution-active sites and thereby adding extrinsic controls on dissolution rates.


Assuntos
Hidróxido de Alumínio , Óxido de Alumínio , Hidróxido de Sódio , Hidróxido de Alumínio/química , Óxido de Alumínio/química , Adsorção , Oxalatos
6.
Water Res ; 251: 121170, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277831

RESUMO

In this study, we found that alumina (Al2O3) may improve the degradation of phenolic pollutants by KMnO4 oxidation. In KMnO4/Al2O3 system, the removal efficiency of 2,4-Dibromophenol (2,4-DBP) was increased by 26.5%, and the apparent activation energy was decreased from 44.5 kJ/mol to 30.9 kJ/mol. The mechanism of Al2O3-catalytic was elucidated by electrochemical processes, X-ray photoelectron spectroscopy (XPS) characterization and theoretical analysis that the oxidation potential of MnO4- was improved from 0.46 V to 0.49 V. The improvement was attributed to the formation of coordination bonds between the O atoms in MnO4- and the empty P orbitals of the Al atoms in Al2O3 crystal leading to the even-more electron deficient state of MnO4-. The excellent reusability of Al2O3, the good performance on degradation of 2,4-DBP in real water, the satisfactory degradation of fixed-bed reactor, and the enhanced removal of 6 other phenolic pollutants demonstrated that the KMnO4/Al2O3 system has satisfactory potential industrial application value. This study offers evidence for the improvement of highly-efficient MnO4- oxidation systems.


Assuntos
Óxido de Alumínio , Poluentes Químicos da Água , Óxido de Alumínio/química , Óxidos/química , Oxirredução , Compostos de Manganês/química , Fenóis , Catálise , Poluentes Químicos da Água/química
7.
J Environ Manage ; 351: 119660, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043310

RESUMO

Meta-analysis of red mud-related literature in English published from 1976 to 2022 and in Chinese from 1990 to 2022 was performed to support critical analysis and evaluation of the available literature based on the following aspects of red mud research: (a) characterization, (b) treatment for harmfulness minimization, (c) recovery of valuable metals, (d) environmental applications, and (e) uses as construction materials. It was found that (a) sinter red mud tended to contain more silica and calcium, and less iron, sodium and aluminium compared to Bayer red mud; (b) gypsum was the most frequently used agent for harmfulness reduction treatment of red mud, followed by flue gas/CO2; (c) the mean optimal pH for adsorption of major anionic pollutants was 8.42 ± 1.13 (arsenite), 3.73 ± 0.68 (arsenate), 3.50 ± 2.38 (phosphate), 4.43 ± 1.04 (fluoride) and 3.80 ± 1.54 (chromate); (d) wastewater treatment has attracted more attention compared to contaminated soils and waste gases; (e) recovery of iron and scandium has attracted more attention compared to other metals; (f) cement making has been the focus in construction uses. Most of the research findings were based on laboratory-scale experiments that focused on efficacy rather than efficiency. There was a lack of integrated approaches for research in red mud valorization.


Assuntos
Óxido de Alumínio , Poluição Ambiental , Óxido de Alumínio/química , Metais , Ferro , Alumínio
8.
Chemosphere ; 349: 140842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048834

RESUMO

Green and low carbon is an essential direction for the development of water treatment technology. Ozone catalysts prepared by the mixing method have advantages in terms of energy consumption and CO2 emissions, but are considered to be insufficient in catalytic efficiency and stability. In this paper, an Mn-Cu-Ce/Al2O3 (MCCA) catalyst was prepared by optimizing the preparation conditions of the mixing method and the types and ratios of active components. Taking petrochemical secondary effluent (PCSE) as the treatment object, the performance of the catalyst and the carbon emission in the preparation process were studied; and compared with the impregnation method. Results showed that compared with catalysts loaded with other components, the MCCA had a higher removal efficiency for TOC (43.04%) and COD (53.18%), which was basically equivalent to the impregnation method, and the treated effluent reached the expected concentration. MCCA promoted the decomposition rate of O3 by ten times, and the main active species generated were found to be •OH and 1O. Similar to the catalytic ozonation by the catalyst prepared by the impregnation method, the adsorption sites and surface hydroxyl groups on the MCCA surface play a significant role in the degradation of pollutants. However, the carbon emission in the catalyst preparation process of the mixing method was 418.68 kg/ton, which was only 44% of the impregnation method (949.67 kg/ton). Under the global low-carbon transition, this study shows that the mixing method aligns more with the concept of green, clean, and efficient ozone catalyst preparation.


Assuntos
Ozônio , Poluentes Químicos da Água , Carbono , Alumínio , Ozônio/química , Poluentes Químicos da Água/análise , Óxido de Alumínio/química , Catálise
9.
Int Orthod ; 22(1): 100822, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37992472

RESUMO

PURPOSE: The objective of this study was to compare the shear bond strengths of orthodontic brackets bonded to translucent dental zirconia samples which are anatomically accurate and treated with various surface treatments. METHODS: This in vitro study included 156 samples from 3 brands of high-translucent zirconia split into a control group and 4 surface treatment groups: 9.6% hydrofluoric acid etching, 50-micron aluminium oxide particle air abrasion, and 30-micron tribochemical silica coating (TBS) particle air abrasion with and without silane application. After surface treatment, all groups were primed with a 10-MDP primer and bonded to metal orthodontic brackets. Shear bond strength (SBS) was tested and results were compared between all groups. Data analysis consisted of a balanced two-factor factorial ANOVA, a Shapiro-Wilks test, and a non-parametric permutation test. The significance level was set at 0.05. RESULTS: Among all surface treatments, aluminium oxide particle abrasion produced significantly higher SBS (P≤0.002). Lava™ Plus zirconia samples had significantly higher SBS than Cercon® samples (P<0.0001). TBS surface treatment produced significantly higher SBS on Lava™ Plus samples than it did on the other zirconia brands (P=0.032). CONCLUSIONS: This study indicated that mechanical abrasion using aluminium oxide in combination with a 10-MDP primer creates a higher SBS to high-translucent zirconia than the bond created by tribochemical silica coating. Also, there was no significant difference in ARI regardless of zirconia brand or surface preparation.


Assuntos
Colagem Dentária , Metacrilatos , Braquetes Ortodônticos , Zircônio , Humanos , Cimentos de Resina/química , Abrasão Dental por Ar , Propriedades de Superfície , Resistência ao Cisalhamento , Dióxido de Silício/química , Óxido de Alumínio/química , Teste de Materiais , Análise do Estresse Dentário
10.
Dent Mater J ; 43(1): 84-89, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38104998

RESUMO

The objective of this study is to compare the shear bond strength (SBS) and the morphological characteristics and chemical compositions of the base surface of newly bonded and rebonded ceramic brackets with different mechanical retention bases. Sixty extracted human premolars were divided into the newly bonded and rebonded groups. Ceramic brackets with patterned, laser-etched, and particle-coated patterned bases were randomly bonded to the tooth samples in each group (n=10 per base type). The rebonded brackets exhibited significantly lower SBS than the newly bonded brackets (p<0.05). The main chemical composition of the brackets in both groups was aluminum on the energy-dispersive X-ray spectroscopy. Scanning electron microscopy imaging showed the presence of regular-shaped undercuts or irregular micro-undercuts on the bracket bases which mostly remained intact even after debonding and sandblasting, while coated particles disappeared. The rebonded ceramic brackets with mechanical retention bases exhibited clinically acceptable bond strength regardless of retentive forms.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Humanos , Colagem Dentária/métodos , Propriedades de Superfície , Cerâmica/química , Óxido de Alumínio/química , Resistência ao Cisalhamento , Teste de Materiais
11.
J Esthet Restor Dent ; 36(5): 746-760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38130045

RESUMO

OBJECTIVE: This scoping review aims to assess the influence of air abrasion with aluminum oxide and bioactive glass on dentin bond strength. MATERIALS AND METHODS: An electronic search was conducted in three databases (PubMed, Cochrane Library, and Embase), on March 3rd, 2023, with previously identified MeSH Terms. A total of 1023 records were screened. Exclusion criteria include primary teeth, air abrasion of a substrate other than sound dentin, use of particles apart from aluminum oxide or bioactive glass, and studies in which bond strength was not assessed. RESULTS: Out of the 1023 records, title and abstract screening resulted in the exclusion of 895 and 67 studies, respectively, while full-text analysis excluded another 25 articles. In addition, 5 records were not included, as full texts could not be obtained after requesting the authors. Two cross-references were added. Thus, 33 studies were included in this review. It is important to emphasize the absence of standardization of air abrasion parameters. According to 63.6% of the studies, air abrasion does not influence dentin bond strength. Moreover, 30.3% suggest improving bonding performance, and 6.1% advocate a decrease. CONCLUSIONS: Air abrasion with aluminum oxide does not enhance or impair dentin bond strength. The available data on bioactive glass are limited, which hinders conclusive insights. CLINICAL SIGNIFICANCE: Dentin air abrasion is a widely applied technique nowadays, with numerous clinical applications. Despite the widespread adoption of this procedure, its potential impact on bonding performance requires a thorough analysis of the existing literature.


Assuntos
Resinas Compostas , Colagem Dentária , Resinas Compostas/química , Colagem Dentária/métodos , Abrasão Dental por Ar/métodos , Teste de Materiais , Propriedades de Superfície , Óxido de Alumínio/química , Dentina , Cimentos de Resina/química
12.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067919

RESUMO

Optical sensors excel in performance but face efficacy challenges when submerged due to potential surface colonization, leading to signal deviation. This necessitates robust solutions for sustained accuracy. Protein and microorganism adsorption on solid surfaces is crucial in antibiofilm studies, contributing to conditioning film and biofilm formation. Most studies focus on surface characteristics (hydrophilicity, roughness, charge, and composition) individually for their adhesion impact. In this work, we tested four materials: silica, titanium dioxide, aluminum oxide, and parylene C. Bovine Serum Albumin (BSA) served as the biofouling conditioning model, assessed with X-ray photoelectron spectroscopy (XPS). Its effect on microorganism adhesion (modeled with functionalized microbeads) was quantified using a shear stress flow chamber. Surface features and adhesion properties were correlated via Principal Component Analysis (PCA). Protein adsorption is influenced by nanoscale roughness, hydrophilicity, and likely correlated with superficial electron distribution and bond nature. Conditioning films alter the surface interaction with microbeads, affecting hydrophilicity and local charge distribution. Silica shows a significant increase in microbead adhesion, while parylene C exhibits a moderate increase, and titanium dioxide shows reduced adhesion. Alumina demonstrates notable stability, with the conditioning film minimally impacting adhesion, which remains low.


Assuntos
Óxido de Alumínio , Dióxido de Silício , Óxido de Alumínio/química , Dióxido de Silício/química , Propriedades de Superfície , Soroalbumina Bovina/química , Titânio/química , Adsorção
13.
Clin Oral Investig ; 27(12): 7833-7840, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989965

RESUMO

OBJECTIVES: To assess the effect of glass-ceramic coated zirconia versus alumina air-abraded zirconia on the shear bond strength (SBS) of resin cement and investigate the residual stresses present on both mechanically pre-treated surfaces. MATERIALS AND METHODS: A total of 180 zirconia disks, with diameters of 10 mm and 5 mm, were divided into two groups: DCMhotbond glass-ceramic coated, followed by hydrofluoric acid etching (DCM), and alumina air-abraded (AB). All mechanically pre-treated disks were conditioned with G-Multi Primer and bonded using G-Cem Linkforce Cement. Ninety specimens were immersed in distilled water for 24 h and subsequently allocated into three groups based on aging conditions (n = 15/subgroups): immediate testing, 5000 thermal cycles, and 10,000 thermal cycles. Then, the shear bond strength was assessed, and the obtained data were subjected to analysis using a two-way ANOVA, followed by a one-way ANOVA and Tukey's HSD post hoc test (α = 0.05). The residual stresses present on both mechanically pre-treated surfaces were examined using X-ray diffraction analysis. RESULTS: The mean SBS values of the DCM and AB groups showed no significant difference under each aging condition. The SBS of DCM groups was not affected by thermal cycles, whereas the SBS of AB groups exhibited a significant decrease following thermal cycles. Glass-ceramic coated surfaces exhibited higher compressive stresses than alumina air-abrasion. CONCLUSIONS: The DCMhotbond glass-ceramic coated zirconia showed comparable bond strength to the alumina air-abrasion technique. CLINICAL RELEVANCE: The DCMhotbond glass-ceramic coating technique is a promising alternative for zirconia surface pre-treatment. However, further investigations are needed before suggesting its clinical use.


Assuntos
Colagem Dentária , Óxido de Alumínio/química , Propriedades de Superfície , Cerâmica/química , Cimentos de Resina/química , Zircônio/química , Resistência ao Cisalhamento , Teste de Materiais , Análise do Estresse Dentário
14.
Int J Periodontics Restorative Dent ; (7): s65-s77, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37879051

RESUMO

PURPOSE: To investigate the effects of airborne-particle abrasion and nanosilica (nano-Si) infiltration treatment on the surface characteristics of dental zirconia. MATERIALS AND METHODS: A total of 15 unsintered zirconia ceramic green bodies (10 × 10 × 3 mm) were divided into three groups (n = 5): Group C, no treatment after sintering; Group S, airborne-particle abrasion with 50-µm aluminum oxide particles after sintering; and Group N, infiltration of nano-Si followed by sintering and hydrofluoric acid (HF) etching. The zirconia disks' surface roughness was analyzed by atomic force microscopy (AFM). The surface morphology of the specimens was analyzed using scanning electron microscopy (SEM), and the chemical composition was analyzed by energy-dispersive x-ray (EDX). Data were statistically analyzed by the Kruskal-Wallis test (P < .05). RESULTS: Zirconia surface treatments by infiltration of nano-Si, sintering, and HF etching showed multiple changes in the surface features. The surface roughness of Groups C, S, and N were 0.88 ± 0.07 µm, 1.26 ± 0.10 µm, and 1.69 ± 0.15 µm, respectively. The surface roughness of Group N was significantly higher than that of Groups C and S (P < .05). EDX analysis showed peaks that corresponded to silica (Si) after infiltration with colloidal Si that disappeared following acid etching. CONCLUSIONS: Infiltrating nano-Si increases the surface roughness of zirconia. The formation of retentive nanopores on the surface potentially improves the zirconia-resin cement bonding strengths.


Assuntos
Colagem Dentária , Humanos , Propriedades de Superfície , Cerâmica/química , Zircônio/química , Cimentos de Resina/química , Óxido de Alumínio/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Corrosão Dentária
15.
J Environ Manage ; 345: 118905, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678022

RESUMO

The development of cobalt-based supported catalysts with high PMS catalytic activity and stability by adjusting the composition of the support is highly desirable yet remains scarce. In the work, a series of catalysts (Co2AlO4/Al2O3-xSiO2) were prepared by impregnation and high-temperature calcination using Al2O3-xSiO2 with a low Si-Al ratio as the support. Measurement techniques such as XRD, XPS, UV-DRS, FTIR, BET, SEM and HRTEM were used to characterize textural and chemical properties (ratio of Co3+/Co2+, specific surface area, pore size, pore volume, etc.). The ratio of Co3+/Co2+ and pore volume of Co2AlO4/Al2O3-xSiO2 can be turned by controlling the ratio of Si to Al, which are closely related to the catalytic performance and reusability of the catalysts. The optimized catalyst (Co2AlO4/Al2O3-0.25SiO2) can completely degrade 10 mg/L p-nitrophenol (PNP) in 40 min in the pH range of 3-9 with excellent reusability. The effects of several reaction parameters (i.e., PMS dosage, Co2AlO4/Al2O3-0.25SiO2 dosage, reaction temperature, initial pH value, and inorganic ions) on PNP removal were comprehensively investigated. Sulfate radical (SO4•-) and singlet oxygen (1O2) are making a major contribution to the degradation of PNP. Moreover, a millimeter-scale catalyst (CoSiAl-0.25/Al2O3 pellet) was prepared by sol adsorption and high-temperature calcination method, which maintained high oxidation activity after treatment of 18 L wastewater (PNP of 10 mg/L) in a continuous flow process. The method is simple and easy to operate on a large scale, providing a new perspective on the design and preparation of cobalt-aluminum spinel catalysts for activated PMS.


Assuntos
Alumínio , Cobalto , Cobalto/química , Óxido de Alumínio/química , Peróxidos/química
16.
Sci Total Environ ; 905: 167140, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722424

RESUMO

Alkalinity regulation and nutrient accumulation are critical factors in the construction of plant and microbial communities and soil formation in bauxite residue, and are extremely important for sustainable vegetation restoration in bauxite residue disposal areas. However, the establishment and succession of microbial communities driven by plant colonization-mediated improvements in the physicochemical properties of bauxite residues remain poorly understood. Thus, in this study, we determined the saline-alkali properties and dissolved organic matter (DOM) components under plant growth conditions and explored the microbial community diversity and structure using Illumina high-throughput sequencing. The planting of Elymus dahuricus (E. dahuricus) in the bauxite residue resulted in a significant decrease in total alkalinity (TA), exchangeable Na, and electrical conductivity (EC) as well as the release of more tryptophan-like protein compounds and low-molecular-weight humic substances associated with biological activities into the bauxite residue substrate. Taxonomical analysis revealed an initial-stage bacterial and fungal community dominated by alkaline-tolerant Actinobacteriota, Firmicutes, and Ascomycota, and an increase in the relative abundances of the phyla Bacteroidota, Cyanobacteria, Chloroflexi, and Gemmatimonadota. The biological activities of phylum Actinobacteriota, Bacteroidota, and Gemmatimonadota were significantly associated with protein-like and UVA-like humic substances. As eutrophic bacteria, Proteobacteria participate in the transformation of humic substances and can not only utilize small molecules of organic matter and convert them into humic substances but also promote the gradual conversion of humic acids into simple molecular compounds. Our results suggest that plant roots secrete organic matter and microbial metabolites as the main biogenic organic matter that participates in the establishment and succession of the microbial community in bauxite residues. Root length affects bacterial and fungal diversity by mediating the production of protein-like substances.


Assuntos
Elymus , Microbiota , Poluentes do Solo , Plantas Tolerantes a Sal/metabolismo , Substâncias Húmicas/análise , Óxido de Alumínio/química , Poluentes do Solo/análise , Solo/química , Bactérias/metabolismo , Bacteroidetes
17.
J Environ Manage ; 346: 118972, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716171

RESUMO

The aluminum industry is facing severe economic and environmental problems due to increasing carbon emissions and growing stockpiles of red mud (RM). RM is a strongly alkaline, high-emission solid waste from the alumina industry with potential for CO2 sequestration. However, the effectiveness of RM carbon sequestration is poor, and the mechanism behind it is not well understood. In this study, the effect of microwave and tube furnace activation of RM on CO2 sequestration in alumina was first investigated at different temperatures. The result showed that the CO2 sequestration capacity of unmodified RM (URM) was only 14.35 mg/g at ambient temperature and pressure, and the CO2 sequestration capacity could be increased to 52.89 mg/g after high-temperature activation and modification. Besides, high-temperature activation and modification will effectively improve the carbon sequestration capacity of RM. The carbonized RM was characterized by FT-IR, SEM, XRD, laser particle size, TG-DSC, and pH measurements. In addition, the mechanism of RM capturing CO2 was also proposed, which shows that CO2 was finally sequestered in the RM as CaCO3. The change in particle size distribution and the mineral phase in the RM indicated that high-temperature activation modification positively affects the application of RM to the sequestration of CO2. This study can provide a promising technology for the low-carbon and green development of the aluminum industry, as well as achieving the waste treatment and utilization objective.


Assuntos
Alumínio , Dióxido de Carbono , Dióxido de Carbono/química , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Alumínio/química , Eletrólitos , Carbono
18.
Mar Pollut Bull ; 196: 115584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774462

RESUMO

Between 1999 and 2009, 344,000 m3 of red mud was released into the red mud dumping zone in the East Sea-Byeong ocean dumping site in South Korea. This study aimed to assess the impacts before and after the 2010 red mud dumping ban. We quantified total Cr concentrations by depth from core sediment samples at the red mud dumping station and evaluated benthic communities in 2004, 2009, 2012, 2017, and 2019. At the dumping station DB-085, the Cr content in the upper layer (0-10 cm) exceeded the effect range median criteria in all study years and decreased with time. Geochemical fraction studies using sequential extraction methods from core sediment samples in 2004, 2009, and 2017 showed high ratios of non-residual fractions (anthropogenic inputs), indicating persistent potential long-term risk after the 2010 ban. Additionally, we confirmed that Thyasira tokunagai, an opportunistic and contamination-stress-resistant species, dominated the study station.


Assuntos
Bivalves , Cromo , Animais , Cromo/análise , Óxido de Alumínio/química , Monitoramento Ambiental/métodos , Oceanos e Mares
19.
Sci Total Environ ; 904: 166596, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37640079

RESUMO

The use of catalyst materials to mediate the enhancement of microbial degradation in wastewater is a new economic and energy saving breakthrough in water treatment technology. In this study, γ-Al2O3, which is commonly used as catalyst/carrier, is used as biological filler to treat kitchen-oil wastewater with low biodegradability, and the COD removal rate is about 50 %. It is found that the complexation of cationic vacancies on Al2O3 surface with extracellular polymeric substance (EPS) secreted by microorganisms in wastewater lead to the polarization of electron distribution on biofilm. The efficient degrading bacteria are enriched on reaction interface and obtain electrons to maintain electron dynamic balance by enhancing the transmembrane metabolism of pollutants. The aluminum vacancies on Al2O3 surface accelerate the microbial degradation of pollutants. The cationic vacancies in the structure of catalyst accelerate the acquisition of exogenous electrons by microorganisms without the addition of external energy, which provides a new idea for catalytic fillers to enhance wastewater degradation.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Matriz Extracelular de Substâncias Poliméricas/química , Óxido de Alumínio/química , Catálise , Poluentes Químicos da Água/análise
20.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446621

RESUMO

Two series of MCM-36 zeolites intercalated with various pillars and modified with iron were synthesized, analyzed with respect to their physicochemical properties, and tested as catalysts for the NH3-SCR process. It was found that the characteristic MWW morphology of MCM-36 can be obtained successfully using silica, alumina, and iron oxide as pillars. Additionally, one-pot synthesis of the material with iron resulted in the incorporation of monomeric Fe3+ species into the framework positions. The results of catalytic tests revealed that the one-pot synthesized sample intercalated with silica and alumina was the most efficient catalyst of NO reduction, exhibiting ca. 100% activity at 250 °C. The outstanding performance of the material was attributed to the abundance of Lewis acid sites and the beneficial influence of alumina on the distribution of iron species in the zeolite. In contrast, the active centers originating from the Fe2O3 pillars improved the NO conversion in the high-temperature range. Nevertheless, the aggregated particles of the metal oxide limited the access of the reacting molecules to the inner structure of the catalyst, which affected the overall activity and promoted the formation of N2O above 300 °C.


Assuntos
Óxidos , Zeolitas , Oxirredução , Ferro/química , Zeolitas/química , Óxido de Alumínio/química , Dióxido de Silício , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...